香蕉在线视频网站,国产视频综合,亚洲综合五月天欧美,成人亚洲综合,日本欧美高清全视频,国产视频黄色,欧美高清在线播放

吳軍:ChatGPT不算新技術(shù)革命 帶不來什么新機會

4月3日晚上,得到直播間邀請到了計算機科學(xué)家、自然語言模型專家吳軍,就人工智能和ChatGPT等當(dāng)下熱議的話題作了一次直播分享。

ChatGPT的出現(xiàn),為什么會引起恐慌?

我知道,最近ChatGPT這事兒在中國很火,很多人在討論,但很有意思的是,其實這件事在美國,已經(jīng)沒有太多人去談?wù)撨@個話題了。其實不光是ChatGPT,往前看十年,當(dāng)時很多新技術(shù)出現(xiàn)的時候,我就發(fā)現(xiàn)在中國媒體上討論的熱度要遠(yuǎn)遠(yuǎn)高于美國。雖然那個技術(shù)其實主要出現(xiàn)在美國,但是中國人老百姓對此更關(guān)心。我認(rèn)為這是一件好事,但也是一件壞事。

這個“壞”在于,這些技術(shù)實際上是被過度的炒作了,在這個過程中,有很多渾水摸魚的人從中賺錢。就比如說區(qū)塊鏈,當(dāng)時炒得那么熱,但如今這個事已經(jīng)很少有人討論了,對吧?這是第一個。第二個就是元宇宙,目前美國只有 Facebook一家還在堅持做。那到了中國,很多人就在討論說,我們是不是將來會生活在一個完全虛擬的世界。最后,大概去年底到今年初,F(xiàn)acebook在這個領(lǐng)域幾百億美元投下去,一個響也沒聽著,最后開始了大規(guī)模的裁員。到了現(xiàn)在,被熱炒的一個話題就是ChatGPT,有的人興奮,有的人恐懼,還有我現(xiàn)在也看到在中國還有很多人在渾水摸魚,試圖再割大家一次韭菜。

在講ChatGPT是什么以前,我先給大家講一個歷史故事,這歷史故事你聽起來你就會發(fā)笑,但是你回頭看,今天很多人的表現(xiàn)也是如此。

1503年,哥倫布的兒子記下來的這么一件事兒,哥倫布往西航行,去往新大陸,結(jié)果航行到中途,到了牙買加這個地方,船上就沒吃的了。于是,哥倫布和船員只能寄希望于當(dāng)?shù)厝藖硖峁╋嬍?。但是,提供了幾天以后,船員就跟當(dāng)?shù)厝税l(fā)生了矛盾——有些船員偷了當(dāng)?shù)厝说臇|西,所以當(dāng)?shù)厝司蛿嗔孙嬍车墓?yīng)。

為了擺脫這個困境,哥倫布想到了一個妙招。哥倫布當(dāng)時隨身帶著一本萬年歷,在日歷上標(biāo)著說某年月日會出現(xiàn)日食、月食等等所有這些信息。哥倫布當(dāng)時就把當(dāng)?shù)氐牟柯涫最I(lǐng)找來,說你們不給我提供食物,已經(jīng)得罪了上帝,上帝會發(fā)怒,月亮就會變紅,然后上帝就會把月亮收走。

當(dāng)然,我們現(xiàn)在基本上都知道,在月全食發(fā)生的時候,也就是地球還沒有完全擋住月亮的時候,月亮確實是紅的,就是我們所謂的“血月”。但是,當(dāng)時的牙買加人并不知道。結(jié)果,到了晚上,牙買加人就發(fā)現(xiàn),月亮果然變紅了,然后慢慢地就一點點消失了。當(dāng)?shù)厝司拖萑肓丝只牛蠹壹娂娬f,上帝要懲罰他們了。

這個部落首領(lǐng)慌忙去求哥倫布,承諾答應(yīng)哥倫布的所有條件。哥倫布就說,好,我去帳篷里向上帝禱告,讓他不懲罰你們,但是我需要一點時間,然后哥倫布就走進(jìn)了帳篷。其實,進(jìn)了帳篷之后,哥倫布就是拿著一個沙漏,在看那個計時。

今天咱們有天文學(xué)知識,肯定知道月全食的時間,也就會維持大概48分鐘,到時候月亮就會重新出現(xiàn)。但是,這些牙買加人不知道。他們看到的就是,哥倫布從帳篷里出來,月亮也就出來了。然后哥倫布說,這是上帝已經(jīng)聽了我的勸解,答應(yīng)寬恕你們,但是你們必須要給我們好好地提供食物。所以,當(dāng)?shù)厝饲Ф魅f謝,給他們不斷提供食物。

這個故事說明什么呢?月全食這件事,它的發(fā)生背后自有其原因,但是在人們不知道這個原因的時候,往往只能把這個自然現(xiàn)象歸結(jié)為一個神的作用。而這個神,本身又是人創(chuàng)造出來的。也就是說,人自己創(chuàng)造一個神以后,然后趴在神的腳下,成為了他的奴仆。

這就是我為什么要給大家開《世界文明史》的課程。

其實這個文明的發(fā)展過程,就是人類不斷認(rèn)識自然規(guī)律的過程。我們一點點的進(jìn)步,為的就是讓現(xiàn)在的我們不再像當(dāng)?shù)氐耐林四菢?,盲目地相信一個人向上帝禱告真的可以阻止月亮消失。我們現(xiàn)在知道,在日食月食的背后,實際上是開普勒行星的三定律在起作用,然后在開普勒行星三定律背后是牛頓的萬有引力定律。人類搞清楚這個原因以后,對自然就不再僅僅是畏懼了,我們可以利用自然規(guī)律做很多很多事情。

ChatGPT的技術(shù)基礎(chǔ)是什么?

從歷史回到現(xiàn)在,其實ChatGPT的情況也差不多,背后是一個叫做語言模型的一個數(shù)學(xué)模型在發(fā)揮作用。換句話說,ChatGPT的背后是一個數(shù)學(xué)模型。在今天,這項技術(shù)顯得很強大的原因主要是三個:

第一,它用到的計算量很大;

第二,它的數(shù)據(jù)量很大;

第三,今天訓(xùn)練語言模型的方法比以前要好很多。

那么,語言模型是什么呢?或者說它是一個什么時代的產(chǎn)物?

它是1972 年,由我的導(dǎo)師賈里尼克(Fred Jelinek)帶領(lǐng)團隊研發(fā)的一項技術(shù)。具體地講,是他當(dāng)時在IBM帶著人來完成的一項技術(shù),是用來衡量一句話或者一個語言現(xiàn)象有多么的可能產(chǎn)生。那它有什么用?它最初的用處是做的語音識別,后來是做機器翻譯,再后來是做計算機問答,也就是我們今天熟悉的回答問題。

當(dāng)時它就可以做摘要,比如舉一個例子,有一篇一萬字的文章,那么你怎么摘要出十句話能概括這一篇文章的內(nèi)容,這對于做這個自然語言處理的人來講,就是一個數(shù)學(xué)問題。也就是說,你的條件是什么?條件是這一萬個字,然后你想得到的結(jié)果是什么?結(jié)果可能就是十句話,一百個字。然后這里頭有很多種組合,你可以隨便挑幾個句子,也可以把有的句子拆成兩段,把后面那些不太重要的修飾或者形容的部分去掉。然后,你也可以把兩個句子合成一個句子,那么你在合成一段文本的時候,這個計算機就會計算一個概率,哪些句子合成在一起的概率比較大,它會按照概率幫你合成。

而我們今天看到的ChatGPT,就是這個大的語言模型,它就是會挑一個概率最大的、最有可能發(fā)生的這樣一個文本來給你看。所以總體來講,ChatGPT生成結(jié)果的過程,是一個用大量的計算資源來計算的過程。它需要非常龐大的數(shù)據(jù)量來支撐,有很多很多的GPU(電腦處理器)。沒有這些東西的話,ChatGPT是做不起來的。

而且今天這個ChatGPT,其實不光是技術(shù),還有很多人工在背后。他們還雇了一家公司,專門負(fù)責(zé)審核ChatGPT產(chǎn)生的結(jié)果。比如說,ChatGPT產(chǎn)生了一百篇摘要,都挺好,我已經(jīng)分辨不出來了,那么這些人就負(fù)責(zé)幫我分辨一下,到底哪一篇更像是準(zhǔn)確的摘要。

那實際上,你可以看到,ChatGPT背后就是一個語言模型,而這一語言模型的技術(shù)是1972年就已經(jīng)有了的。到現(xiàn)在,經(jīng)過了五十年,現(xiàn)在行業(yè)內(nèi)其實大家并不覺得它是一個什么了不得的東西。在此以前,這個語言模型其實已經(jīng)做了很多的事情。

提到“語言模型”(language model)這個詞,最初是由我的導(dǎo)師賈里尼克提出來的。他大概在1993年的時候到了約翰霍普金斯大學(xué),我是1996年到這個大學(xué),然后成為他學(xué)生。那么這個詞的中文,也就是你看到的“語言模型”這四個字,則是我在20世紀(jì)90年代的時候發(fā)表論文時候創(chuàng)造出來的。那時,只有我們這些圈內(nèi)的人知道它能做很多事,但是你不會想到說,哎,這個事后來會被熱炒。

你可以這樣理解,“語言模型”之于ChatGPT,就相當(dāng)于開普勒的這個行星三定律之于月食。

“語言模型”誕生之初是什么情況?

那么在發(fā)明的當(dāng)時,語言模型是一個什么情況?

其實,在20世紀(jì)90年代的時候,用簡單統(tǒng)計方法得到的模型很不準(zhǔn)確。這就相當(dāng)于,我打個比方,你觀察行星,但用的是托勒密的地心說來預(yù)測,是很不準(zhǔn)確的。所以,那時候我們開始引入了語法、主題、語義的很多信息。然后,這個語言模型就變得很復(fù)雜了。復(fù)雜之后就又帶來了一個很大的問題。

什么問題?

比如,我當(dāng)時做過一個很復(fù)雜的語言模型,這個語言模型當(dāng)時有多少參數(shù)?600萬個參數(shù),就是說,這個語言模型大小基本上按這個參數(shù)來定。我那時候做的已經(jīng)是那個時代能做的最大、最復(fù)雜的語言模型了。我當(dāng)時用的還不是PC機,而是20臺超級服務(wù)器,然后大概算了三個月才訓(xùn)練出這樣一個語言模型。所以你看,它的計算量是非常大的。那么,第一版ChatGPT,它用的語言模型參數(shù)是多少呢?大概是 2000 億個參數(shù),大家可以看到這些年的變化。

所以,今天很多人問,ChatGPT在美國出現(xiàn)了,中國研究機構(gòu)什么時候能做ChatGPT?其實,中國的大部分研究機構(gòu)是做不了的,不是說研究水平的問題,而是因為ChatGPT太耗資源。今天的ChatGPT,可能光硬件的成本就要差不多10億美元,這還沒算電錢,所以成本和耗資是非常巨大的。所以,如果開完玩笑,問ChatGPT的最大貢獻(xiàn)是什么,我倒覺得它對全球變暖是有很大貢獻(xiàn)的。

所以,我想說的是,ChatGPT這件事,它的原理很簡單,但是在工程上要想做到,其實是蠻困難的一件事。

計算機擅長回答什么問題?

到了大概2010年前后,也就是13年前,語言模型能做到什么程度?我給大家看兩個例子。這兩個例子都是我在2014年離開Google以前做的。當(dāng)時我負(fù)責(zé)的是Google的自動問答系統(tǒng),就是讓計算機回答問題。不過因為這個產(chǎn)品是英文的,所以在中文世界基本上沒有太露臉。

我給你看一下谷歌回答的一個問題——為什么天是藍(lán)色的,why is the sky blue?

它的回答是這樣的:太陽光透過大氣層到達(dá)地球時會發(fā)生折射,空氣中的氣體會讓不同顏色的光散射到各個地方,藍(lán)光波長短,比其他顏色折射率高,所以看上去天是藍(lán)色的。

這是當(dāng)時計算機產(chǎn)生的一個答案。公平地講,這個答案比我自己寫一段答案寫得要更好,因為要解釋這現(xiàn)象,你要知道不少物理學(xué)知識,而且這個句子看上去也挺合情合理的。而今天人們使用ChatGPT的一個目的,就是讓他回答問題。

這里面,我給大家做個拆分。

其實,我們問計算機的問題可以分為兩類,第一類叫做簡單問題,第二類叫做復(fù)雜問題。簡單問題就是關(guān)于事實的問題,比如某某明星是哪兒人,哪一年生的。這都是一些容易的問題,因為它是事實,有明確答案。

第二類是復(fù)雜問題,這也是大家覺得 ChatGPT 非常驚艷的地方。它能整合信息,回答天為什么是藍(lán)色的,好像它自己有邏輯一樣。再有一個,就是問過程的問題,比如說我怎么烤蛋糕,你能不把一步步寫下來?今天我們問ChatGPT怎么烤蛋糕,它可以把這個過程給你寫得很詳細(xì),多少杯水,加多少個雞蛋,加多少面粉等等,它都可以告訴你。然后你根據(jù)它提供的答案,就真能烤出蛋糕,而且烤得可能還挺不錯。

這是大家覺得很了不得的地方。但是你要知道,這件事,在2014年其實計算機已經(jīng)做到了,而且做得很好。所以,這項技術(shù)本身并沒有太多神秘的地方。

計算機和人,誰更擅長寫作?

現(xiàn)在,大家熱議ChatGPT,還有一個原因就是覺得它能寫作。比如說寫一個工作簡報,這是今天美國人用ChatGPT用得最多的地方。我這周干了1234567,這七件事,哎,你看我就不用自己費勁地寫了,我讓ChatGPT生成一個,然后再編輯一下子就可以了。

但是,計算機寫作這件事,其實你說難也難,說容易也容易,我可以給你舉個例子。

在2014年我離開Google之后,當(dāng)時不太做編程了,不過那時候我還有一些計算資源,所以我自己在空閑時間會寫一些程序,做著玩。當(dāng)時呢,我就讓計算機寫了兩首詩,大家可以讀一下這兩首詩。

第一首詩是個五言詩,這是用我的話說,叫做李白風(fēng)格的一首詩,大家可以讀一下。這首詩就是計算機自己寫的。實際上,你如果讀一讀,這個詩里還真有一些李白的這個特點。

那第二首詩,我也把圖片放在下面了,你可以看一下。

先說一下,因為古詩都有平仄一說,但是我們現(xiàn)在的讀音和當(dāng)時的讀音不一樣,所以我們也沒去管這個平仄到底合不合古,但是這個我們單從它的內(nèi)容意境來講,你讀的會覺得很順暢。

好,那么話說回來。第一首詩怎么做的?

其實再簡單不過了,你就把李白的詩放到計算機里。李白詩一共1000 多首,也就一萬來句話,這個對計算機來講太簡單了。它寫的時候,就是把句子分拆開來,拆成兩個字、三個字一組,比如“空愁”這是一組,“憶長安”這三個字一組。然后它就去拼剛才我講的語言模型,算概率,哪個概率最大;拆完了以后,我就跟他提一個要求,說要寫一首憶長安的詩,它就排列組合,生成出這個《憶長安》,實際上就是這么拼湊出來的。第二首詩稍微復(fù)雜一點。

但你知道這兩個程序我寫了多長時間?兩天。這說明什么呢?說明你讓計算機寫出一些還挺像樣的東西,其實不是一件很困難的事情,它沒有你想得這么神秘,或者說計算機寫作本身沒有這你想得這么神秘。

那為什么這兩首詩看起來特別好?因為這是唐詩,唐詩的格式是固定的。同樣的道理,為什么用ChatGPT寫周報寫得好?因為周報的格式基本上是拉清單,那也是個固定的格式。包括,如果你讀《華爾街日報》中文版,這里頭我跟你講,90%的內(nèi)容都是計算機寫的,只是你不知道。寫完了以后人當(dāng)然要給它一個主題,然后給它寫的第一段話寫個引子,然后給一個總結(jié),起個標(biāo)題,這是人要做的。

為什么寫財經(jīng)文章比較好?因為它有好多的事實在里頭,格式也是固定的,所以這件事它做起來就很好。

我花這么長時間來講ChatGPT的背景,實際上就是想說它并不神秘,不是一個什么很高深的機器在背后。一方面,ChatGPT依靠的是一個數(shù)學(xué)模型,而這個數(shù)學(xué)模型1972年就有了,只是今天它的計算能力非常強,靠蠻力計算。

那么,ChatGPT訓(xùn)練一次要耗多少電?大概可能是3000輛特斯拉的電動汽車,每輛跑到20萬英里,把它跑死,這么大的耗電量,才夠訓(xùn)練一次,這個非常花錢的一件事。

ChatGPT對我們到底有什么影響?

那么接下來講講,ChatGPT對人有什么影響。

這就要回到歷史上來看了,每一次技術(shù)革命,其實它對人都會有一些影響。不過,ChatGPT它不算是一項新的技術(shù)革命,因為這我剛才講了,這個過程很長,從20世紀(jì)70年代到90年代,我們做了很多事,90 年代到現(xiàn)在又有很多人做了很多事。這里頭最大進(jìn)步其實不是這個語言模型本身,實際上是后來2000年左右產(chǎn)生的深度學(xué)習(xí),使得訓(xùn)練語言模型能比以前準(zhǔn)確了,不是簡單的做統(tǒng)計。

今天訓(xùn)練語言模型早已經(jīng)不是簡單做統(tǒng)計了,這才是ChatGPT能產(chǎn)生比較好的結(jié)果的一個原因。

至于說ChatGPT對人能產(chǎn)生什么樣影響,這個問題我先不直接回答你,我先問你,剛才給大家看這兩首唐詩,你有沒有發(fā)現(xiàn)一個什么特點?對了,這兩首詩寫得不錯,但是你原來對唐朝了解,不會因為多了這兩首詩會有更新的了解。因為,ChatGPT它某種程度上有點像鸚鵡學(xué)舌,你先要說一段話,它才能跟著學(xué)。它說出來的聲音可能很好聽,但是它并不提供更多的信息。

今天互聯(lián)網(wǎng)上90%的內(nèi)容都屬于這一類——不提供更多的新信息,也不是原創(chuàng)內(nèi)容,也不是自己的感悟,無非是東抄抄,西湊湊。目前,抖音、快手這類短視頻,我覺得99%的內(nèi)容都屬于這一類,沒有營養(yǎng),你讀完以后可能覺得挺有意思,但實際上你在上面讀了再多,其實對你沒有任何幫助。

如果說ChatGPT真的威脅到了誰,我覺得威脅到的就是這一類人的工作,就是說這個抖音上頭那個做短視頻的,或者發(fā)布一些內(nèi)容的,ChatGPT會做得比他們好很多。你就想這樣一件事兒,假設(shè)說,有一群人天天把那唐詩三百首里頭的句子翻來覆去的捯飭,也能捯飭出一些詩,那么ChatGPT捯飭起來肯定比人快得多,所以這項技術(shù)會對這一批人會有影響。

那么,什么人不會受到影響?就是內(nèi)容創(chuàng)造的人不會受影響。

為什么我會這么講?還記得剛才我說的“為什么是天是藍(lán)色的”這個問題嗎?Google為什么能回答這個問題?

因為在Google進(jìn)行回答的時候,它大概把當(dāng)時英語幾乎所有的像樣的句子都做了分析,大概有1000 億句英語句子。那么實際上你會發(fā)現(xiàn),在一些大學(xué)的網(wǎng)站上和NASA的網(wǎng)站上,它就有這個答案,只是我們把它拼拼湊湊,刪刪減減,就把它挑出來了。但是最早的物理學(xué)家做這項研究,把這個道理搞清楚,這個工作是有意義的,也是ChatCPT取代不了的。

所以,ChatGPT的工作相當(dāng)于什么呢?舉例子,托勒密創(chuàng)造出這個模型以后,那么每過一段時間,他們歐洲就會編一個大概幾十年的一個日歷,然后上面標(biāo)上哪天有日食,哪天行星會怎么運動等等。那么人們根據(jù)這些規(guī)律,印好多本這個書,這個ChatGPT就相當(dāng)于有好多本書,你拿著以后一看,說,喔,某年月日會發(fā)生月食,答案就會很清楚。但是,背后真正有意義的工作不是印這個書,而做托勒密的那個研究。

所以我認(rèn)為,從歷史上看ChatGPT其實不算是一次技術(shù)革命,它影響到的都是那個比較懶的人,懶得動腦筋,創(chuàng)造新東西的人。真正探索人類知識奧秘的人,是不會被取代的。

ChatGPT能帶來什么新的機會?

很多人問說,ChatGPT有什么新機會?坦率來講,你沒機會,因為太耗資源了,你耗不起。那么什么人能夠受益?那就是賣資源的這些人。

我可以打個比方,就是說在這個加州淘金熱的時候,很多人蜂擁而至,去淘金,單我們到今天為止還不知道哪一個淘金者真的掙得著錢,沒一個人把名字留下來。但是最后誰掙著錢了?是賣水的人和賣牛仔褲的人。ChatGPT也是一樣的道理。大家跟著一起去淘金,其實你是掙不著錢的,但是在過程中,你還不斷地要買水喝,買牛仔褲穿,最后就是這兩撥人掙到錢了。李維斯Levi's,就是那時候產(chǎn)生的這么一個公司,它就是做牛仔褲的。

那么最后你可能是給幾家大的做云計算的公司在交錢,這可能是一個結(jié)果。

好了,講完了這個ChatGPT的歷史,我給你做一個簡單的總結(jié)。

第一,不要恐懼。

今天是很多人恐懼ChatGPT,就如同不要像當(dāng)年哥倫布遇到的牙買加土著人恐懼月食,一樣的道理。

第二,不要勉強去找所謂的機會,該怎么工作就是怎么工作。

我看有同學(xué)問我,說蘋果為什么這個不做ChatGPT,我說這就對了!這就是為什么蘋果是世界上最有錢的公司,利潤最高,市值最多。目前,很多所謂做這種人工智能的公司到現(xiàn)在都在虧錢。所以,這也是為什么很多同學(xué)有時候問很多太不著調(diào)的問題的時候,我就開玩笑地問他說,你的房貸還清了嗎?你要沒還清,你就好好回去工作,把工作做好,這才是對大家最有意義的事情,從歷史上看也是如此。

第三,你要識破這些所謂的陰謀家或者想割你韭菜的人的那些把戲。

就是說,如果再來一個人假裝哥倫布說他是神的代表,然后他能祈禱上天能讓這月亮出來,你不要信。所以你需要了解ChatGPT背后的一些科學(xué)原理。最簡單的一些原理,像今天我講的這些,你還是需要有所了解。

吳軍,1967年出生,畢業(yè)于清華大學(xué)和約翰霍普金斯大學(xué),計算機專業(yè)博士,前Google高級資深研究員、原騰訊副總裁、硅谷風(fēng)險投資人。

相關(guān)內(nèi)容